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AVERAGING OF A LAYERED ELASTIC MEDIUM WITH LOW DYNAMIC

DISSIPATION AT THE INTERLAYER BOUNDARY

UDC 539.3Yu. A. Bogan

Averaged relations for a layered medium with dynamic dissipation at the interlayer boundary are
constructed for dynamic problems of longitudinal shear and two-dimensional theory of elasticity.
For low dissipation, the averaged boundary-value problem is shown to be singularly perturbed. The
degeneration of the boundary-value problem is studied qualitatively.
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In [1], we constructed averaged relations for an elastic medium with nonstandard matching conditions spec-
ified on the interlayer boundary, which relate, for example the shear stress to the shear-displacement discontinuity
by a certain nonnegative coefficient called the friction factor. For a small friction factor, averaged boundary-value
problems were shown to be singularly perturbed and some formulations of limiting problems were studied. In
the present paper, unlike in [1], we study the case where the matching condition relating the shear stress to the
shear-velocity discontinuity is specified on the interlayer boundary. It is clear that this formulation is meaningful
only in dynamic elasticity problems. The matching condition for composite materials was first formulated in [2].
From a mechanical viewpoint, this condition models, in some sense, wave propagation in a medium in the presence
of internal dissipation at the interlayer boundary. It was found that this matching condition changes the situa-
tion drastically. Unlike in the case studied in [1], where the averaged relations corresponded to a homogeneous
anisotropic material (see also [3]), the averaging considered in the present paper leads to a viscoelastic material. As
in [1], for a small friction factor, singular degeneration of the boundary-value problem occurs and the viscoelastic
term vanishes in the limiting relations. A longitudinal shear problem and a two-dimensional elasticity problem are
studied.

1. Longitudinal Shear. Bakhvalov and Panasenko [4] studied the problem of small longitudinal vibrations
of a rod with allowance for dissipation. In the this section, we consider the averaging problem for a layered anisotropic
elastic medium under conditions of longitudinal shear with dissipation at the interlayer boundary. The vibration
equation is written as
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We denote the maximum diameter of the domain Ω on the plane (in the x1 direction) by L and set ε = L/N , where
N � 1. It is assumed that Eq. (1.1) is uniformly hyperbolic, the layers are orthogonal to the x1 axis, x = (x1, x2),
and the periodicity cell consists of two materials and coincides with the interval (0, 1):

aij(η) = a1
ij , η ∈ (0, h), aij(η) = a2

ij , η ∈ (h, 1), i, j = 1, 2.

The coefficients aij = aij(x1/ε) (i, j = 1, 2) are measurable bounded periodic functions of the fast variable η = x1/ε

with a period of 1 and there exists a constant α > 0 such that
2∑

s,l=1

aslξsξl ≥ α(ξ21 + ξ22)
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for any real ξi (i = 1, 2). At the interface between two materials inside the cell, the following matching condition
relating the normal stress and the rate of the process is satisfied:
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Here the brackets denote the discontinuity of the function at the interface between the materials:[∂u
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For Eq. (1.1) subject to the matching conditions (1.2), we formulate the initial boundary-value problem in the
domain Q = (0, T )× Ω:
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(∂Ω is the boundary of the domain Ω). The solution of problem (1.1)–(1.3) will be denoted by uε(x, t). To construct
the formal asymptotic solution of this problem, we use the averaging method proposed by Bakhvalov [4]. After
introduction of the fast variable η, Eq. (1.1) becomes
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We seek a solution of the boundary-value problem in the form of a series in powers of ε:

uε =
∞∑

n=0

εnun(x, η, t). (1.5)

To construct the averaged equation, it is necessary to determine only The first three terms of this series. Substitut-
ing (1.5) into (1.4), collecting terms of equal powers of ε, and performing transformations, we obtain the following
equation for a power of ε−2:
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which implies that u0 = u0(x, t). For a power of ε−1, we have the following equation and the matching condition
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From relations (1.6) and (1.7) it follows that the function u1(x, η, t) is uniquely determined (with accuracy up to
an arbitrary constant). Relation (1.5) implies that
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Let us determine the function ϕ(x, t). We set
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Using (1.6) and the matching condition (1.2), we obtain the following ordinary differential equation for the func-
tion ϕ(x, t):
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Introducing the new unknown function

ψ(x, t) = λ11ϕ(x, t)− S(x, t),
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we reduce Eq. (1.8) to the form
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Its solution can be written with accuracy up to an arbitrary constant
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Collecting terms at the zeroth power of ε and equating its average over the period to zero, we obtain the averaged
equation for the function u0:
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Substituting the explicit representation of the function S(x, t) into (1.10), we arrive at the integrodifferential equation
for the function u0(x, t) in divergent form
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The last relations should be considered the determining relations for the averaged medium. Supplementing Eq. (1.11)
by the initial and boundary conditions
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we have an averaged boundary-value problem. We set
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Let us now consider the behavior of the solution of problem (1.11), (1.12) for a small k. It is worth noting that in
the interval (0, t), the function

gk(t− τ) =
1

kλ11
exp

(
− t− τ
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)
is an approximation of the δ-function for a small k, since gk(t− τ)→ δ(t− τ) as k → +0, according to the theory
of generalized functions. From the viewpoint of the singular perturbation theory, this implies that at the initial
time, the solution of the initial boundary-value problem contains an exponentially decreasing boundary layer. As
k → +0, the quantity σ11 tends to zero and σ22 to µ∂u/∂x2. In this case, the degenerate equation becomes
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Needless to say, the initial conditions for Eq. (1.13) remain the same. Thus, in the limiting case, the effect
of viscosity vanishes and the spatial dimension of the problem reduces. Equation (1.13) can be considered a
degenerate hyperbolic equation. This gives rise to singularities in the solution of the initial boundary-value problem
for Eq. (1.13). In the domain Ω, this solution generally does not have an integrable squared derivative ∂u/∂x1.
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2. Two-Dimensional Elasticity Problem. For the elasticity equations, we formulate the following initial
boundary-value problem in the domain Q = (0, T )× Ω:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, u(x, t)

∣∣∣
∂Ω

= 0. (2.1)

Here Ω is a plane domain with a piecewise smooth boundary ∂Ω. It is assumed that the mass forces are nonzero.
The solution of problem (2.1) will be denoted by uε(x, t) = (uε

1, u
ε
2). To simplify the calculations, we assume that

the elastic medium is orthotropic and use the generalized Hooke’s law

σ11 = a11(η)e11 + a12(η)e22, σ22 = a12(η)e11 + a22(η)e22,

σ12 = 2a66(η)e12, η = x1/ε, eij = (ui,xj
+ uj,xi

)/2, i, j = 1, 2.

The functions aij(η) are considered measurable bounded functions of the variable η under the usual assumption of
positive definiteness of the elastic constant matrix. Generally, the periodicity cell (0, 1) consists of two materials,
so that

aij(η) = a1
ij , η ∈ (0, h), aij(η) = a2

ij , η ∈ (h, 1), i, j = 1, 2, 6.

At the interlayer boundary, the matching conditions with dissipation are imposed:
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As usual, for a small ε, the solution of the problem is written as a series:
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where ρ(x1/ε) is the density of the material. As in Sec. 1, we replace the derivative with respect to x1 by the total
derivative ∂/∂x1 + (1/ε) ∂/∂η in system (2.4) and collect terms of equal powers of ε. For a power of ε−2, we have
the relations
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It is clear that the function u1
2(x, t, η) is discontinuous in the interval (0, 1). Similarly as in Sec. 1, we set
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Collecting terms at the zeroth power of ε, we obtain averaged relations. The averaged stresses will be denoted by τk
ij

(i, j = 1, 2). The equations of motion have the form
∂τk

11

∂x1
+
∂ϕ1(x, t)
∂x2

= ρ̄
∂2uk

1

∂t2
+ f1(x, t),

∂ϕ1(x, t)
∂x1

+
∂τk

22

∂x2
= ρ̄

∂2uk
2

∂t2
+ f2(x, t).

Here ρ̄ is the period average of the material density and uk
i (i = 1, 2) are the displacements in the averaged problem.

The stresses in the averaged problem are given by
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The structure of formulas (2.3)–(2.5) is clear: the stresses in the averaged problem are calculated by summing
the averaged stresses corresponding to the stationary problem and viscoelastic terms. It is obvious that in the
stationary problem, the elastic constant matrix is positive definite. We note that the viscoelastic term only appears
in formula (2.4) for the shear stress.

Let us consider the behavior of the solution of the initial boundary-value problem for the system of equations
of motion for a small k. As k → +0, the shear stress τk

12 tends to zero, the viscoelastic term vanishes, and the
system of equations of motion becomes
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(v1 and v2 are the displacement vectors for k = 0). Formula (2.6) does not contain the shear stress τ12, the
derivative of v1 with respect to x2 and the derivative of v2 with respect to x1. As in Sec. 1, this system of equations
is degenerate. As shown in [1], in the stationary case, this system is a hyperbolic system with two double families
of characteristics x1 = const and x2 = const, its characteristic form being nonnegative.

Conclusions. A simplified case of a layered medium (compared to the general periodic problem) was
considered. It was shown that the presence of dissipation in dynamic problems changes the equation of state. For
low dissipation, the effect of viscoelasticity vanishes in the limiting case but the limiting equations are degenerate
for the spatial variables. Clearly, this is also the case in the general periodic averaging problem and in the problem
for a cell, one can obtain a singular perturbation in the time coordinate since the shear stress in this case satisfies
relations of the type of (1.8).
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